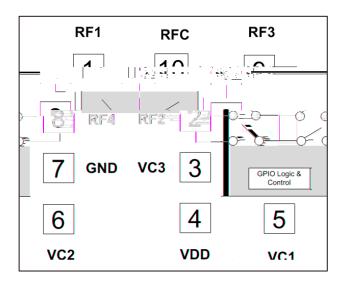


CAN1114 SP4T Switch Product Datasheet

Rev 1.2, July, 2018

CanaanTek Co., Ltd. Room 907, Block Y1, 112 Liangxiu Rd, Shanghai. For sales or technical support, contact CanaanTek at +86-21-5027-3709.

Any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of CanaanTek in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. Under no circumstances shall it be circulated outside the customer's company. CanaanTek reserves the right to modify and to improve the data. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. In addition, except as otherwise explicitly approved by CanaanTek in a written document signed by authorized representatives of CanaanTek, CanaanTek's products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.


CAN1114

Single Pole Four Throw Switch

General Description

The CAN1114 is a very low insertion loss SP4T antenna switch specifically designed for high performance antenna tuning application. All RF path performances are enhanced with an ultra-low on state resistance and low off state capacitance. It allows the creation of advanced tuning topologies to maximize TRP and TIS performance in space constrained applications.

The antenna switching is controlled by GPIO configuration, namely three logic control voltage inputs (VC1, VC2 and VC3). Depending on the logic voltage level applied to the control pins, the RFC pin is connected to one of four switched RF outputs (RF1 to RF4). The negative voltage generator enables less parasitic switch capacitance, therefore yielding better isolation and less insertion loss.

Functional Block Diagram

Package

- Standard QFN Package
- 10-pin
- •1.1mmx1.5mm x0.5mm

Features

- Broadband Frequency Range: 0.1 to 3.0 GHz
- Low On-resistance 1.1
- Low Coff 0.18pF
- Off Ports with Open Type Configuration
- 2.5 to 4.8V Supply Voltage Range
- Integrated Logic

Applications

- Antenna Tuning
- · Band Switching
- Impedance Tuning

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{DD}	5.0	٧
Control voltage	Vc	3.3	٧
RF Input power, 25% duty cycle	Б	43	dBm
VDD = 2.85V, VC = 0/1.8V, Temp=25	P _{IN}		
Max voltage between any combination of RF ports or ground	Vp	45	V
Operating temperature	Тор	-40 to +85	

Storage temperature T

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

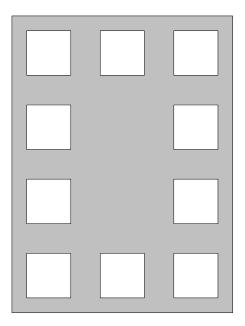
CAUTION: Although this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Nominal Operating Parameters

Parameter	Symbol	Specification			I Imit	Conditions
		Min	Тур	Max	Unit	Conditions
General Performance						Active Mode. $V_{DD} = 2.85V$, $V_{C} = 0/+1.8V$.
Operating Frequency		100		3000	MHz	
Supply Voltage	V_{DD}	2.4	2.85	4.8	>	
Supply Current	I _{DD}		30			
Control Voltage High	VC1 VC2 VC3	1.45	1.80		V	
Control Voltage Low	VC1 VC2 VC3		0	0.45	V	
Control Current	I _{VC}		1			V _C = 1.8V.

Electrical Specifications

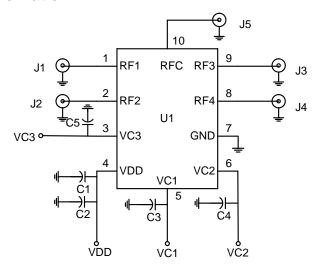
Downwater	Specification		11-2	O a a Pilla a a		
Parameter	Min	Тур	Max	Unit	Conditions	
RF Performance					$V_{DD} = 2.85V, V_C = 0/+1.8V.$	
		0.22		dB	700 915 MHz	
Insertion loss						
(RFC pin to RF1/2/3/4 pins)		0.37		dB	915 1910 MHz	
		0.59		dB	1910 2700 MHz	
		22		dB	700 915 MHz	
Isolation (RFC pin to RF1/2/3/4 pins)		17		dB	915 1910 MHz	
(2 3 3 3 3 3 3 3		15		dB	1910 2700 MHz	
		21		dB	700 915 MHz	
Input return loss (RFC pin to RF1/2/3/4 pins)		15		dB	915 1910 MHz	
(2 3 3 3 3 3 3 3		13		dB	1910 2700 MHz	
Ron		1.1			@100MHz	
Coff		0.18		pF	@100MHz	
Start-up Time		10		μs	V _{DD} from 0V to 90% final value	
ON Switching speed		10		μs	90% final value	
OFF Switching speed		10		μs	90% final value	
Second Harmonic		-68		dBm	915 MHz, Pin = 26dBm	
Third Harmonic		-86		dBm		
Second Harmonic		-77		dBm	1910 MHz, Pin = 26dBm	
Third Harmonic		-86		dBm		



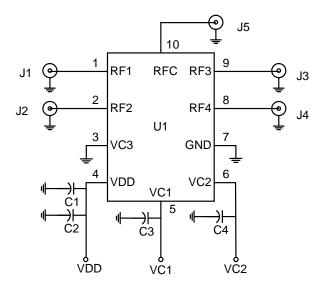
Control Logic Table

_ogic State VC1

Pin Out



Pin Names and Descriptions

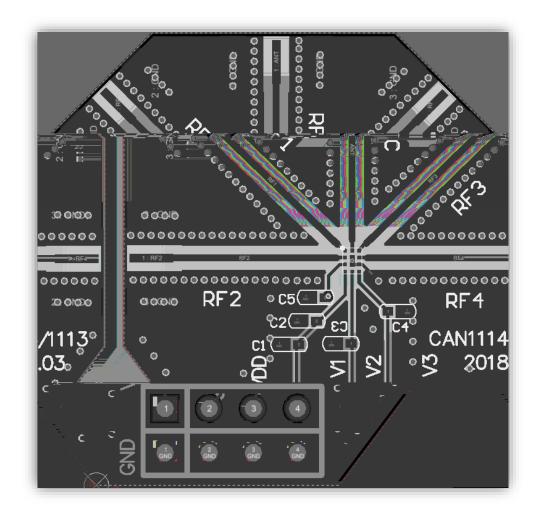

Pin	Name	Description	
1	RF1	RF port 1.	
2	RF2	RF port 2.	
3	VC3	Control Voltage 3.	
4	VDD	Voltage Supply.	
5	VC1	Control Voltage 1.	
6	VC2	Control Voltage 2.	
7	GND	Ground.	
8	RF4	RF port 4.	
9	RF3	RF port 3.	
10	RFC	RF common port.	

Evaluation Board Schematic

Application diagram with 8 modes

Application diagram with 4 modes

EVB BOM List


Part Number	Part	Part Description
U1	CAN1114	CAN1114,SP4T switch
J1,J2,J3,J4&J5	SMA connector	
C1,C2,C3,C4,C5	0.1u F capacitor	Size:0402

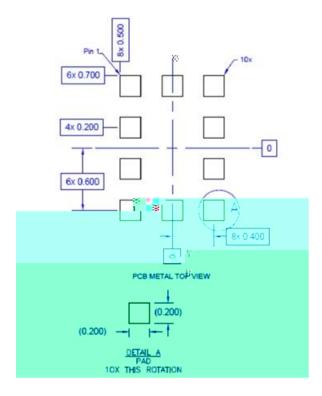
Note: DNP components not listed in BOM.

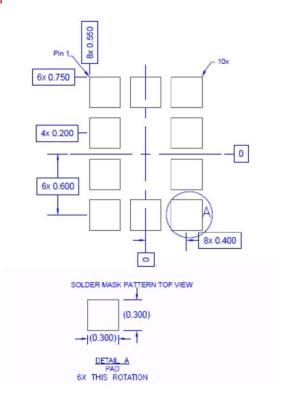


Evaluation Board Layout

EVB Layer Information

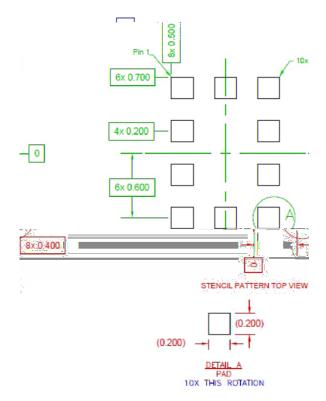
randing Drawing(Dimensions in millimeters)


MILLMETER						
MIN	NOR	MAX				
0.45	0.5	0.55				
0	0.02	0.05				
0.15	0.2	0.25				
	0.40BSC					
	1.50BSC					
	1.10BSC					
0.15	0.25	0.25				
0.05						
0.05						
0.07						
0.1						
0.05						
0.08						



PCB Design Requirements

PCB Metal Land Pattern


PCB Solder mask Pattern

/

PCB Stencil Pattern

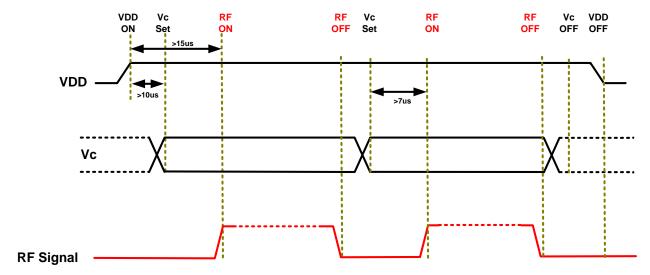
/

Timing Diagram

Power ON and OFF sequence

It is very important that the user adheres to the correct power-on/off sequence in order to avoid damaging the device. The control signals VC1, VC2 and VC3 should be set to 0V unless VDD is set in the operating voltage range.

Power ON


- 1) Apply voltage supply VDD
- 2) Set Controls VC1, VC2 and VC3
- 3) Wait 15

Change switch position from one RF port to another

- 1) Remove RF
- 2) Change control voltages VC1, VC2 and VC3 to set the switch to desired RF port
- 3) Wait 7

Power OFF

- 1) Remove RF
- 2) Remove control voltages VC1, VC2 and VC3
- 3) Remove VDD

CanaanTek

/

